Paul's Online Notes
Paul's Online Notes
Home / Calculus III / 3-Dimensional Space / Curvature
Show General Notice Show Mobile Notice Show All Notes Hide All Notes
General Notice

I have just been informed that Lamar University will be performing network upgrades this Sunday, November 22 between 6:00 PM and 11:00 PM Central Standard Time. During this time it is highly likely that the site will not be available. I realize this is probably a bad time for the site to go down but there isn't anything that I can do about the timing. I apologize for the inconvienence.

November 20, 2020

Mobile Notice
You appear to be on a device with a "narrow" screen width (i.e. you are probably on a mobile phone). Due to the nature of the mathematics on this site it is best views in landscape mode. If your device is not in landscape mode many of the equations will run off the side of your device (should be able to scroll to see them) and some of the menu items will be cut off due to the narrow screen width.

Section 1-10 : Curvature

In this section we want to briefly discuss the curvature of a smooth curve (recall that for a smooth curve we require \(\vec r'\left( t \right)\) is continuous and \(\vec r'\left( t \right) \ne 0\)). The curvature measures how fast a curve is changing direction at a given point.

There are several formulas for determining the curvature for a curve. The formal definition of curvature is,

\[\kappa = \left| {\frac{{d\,\vec T}}{{ds}}} \right|\]

where \(\vec T\) is the unit tangent and \(s\) is the arc length. Recall that we saw in a previous section how to reparametrize a curve to get it into terms of the arc length.

In general the formal definition of the curvature is not easy to use so there are two alternate formulas that we can use. Here they are.

\[\kappa = \frac{{\left\| {\vec T'\left( t \right)} \right\|}}{{\left\| {\vec r'\left( t \right)} \right\|}}\hspace{1.0in}\kappa = \frac{{\left\| {\vec r'\left( t \right) \times \vec r''\left( t \right)} \right\|}}{{{{\left\| {\vec r'\left( t \right)} \right\|}^3}}}\]

These may not be particularly easy to deal with either, but at least we don’t need to reparametrize the unit tangent.

Example 1 Determine the curvature for \(\vec r\left( t \right) = \left\langle {t,3\sin t,3\cos t} \right\rangle \).
Show Solution

Back in the section when we introduced the tangent vector we computed the tangent and unit tangent vectors for this function. These were,

\[\begin{align*}\vec r'\left( t \right) & = \left\langle {1,3\cos t, - 3\sin t} \right\rangle \\ \vec T\left( t \right) & = \left\langle {\frac{1}{{\sqrt {10} }},\frac{3}{{\sqrt {10} }}\cos t, - \frac{3}{{\sqrt {10} }}\sin t} \right\rangle \end{align*}\]

The derivative of the unit tangent is,

\[\vec T'\left( t \right) = \left\langle {0, - \frac{3}{{\sqrt {10} }}\sin t, - \frac{3}{{\sqrt {10} }}\cos t} \right\rangle \]

The magnitudes of the two vectors are,

\[\begin{align*}\left\| {\vec r'\left( t \right)} \right\| & = \sqrt {1 + 9{{\cos }^2}t + 9{{\sin }^2}t} = \sqrt {10} \\ \left\| {\vec T'\left( t \right)} \right\| & = \sqrt {0 + \frac{9}{{10}}{{\sin }^2}t + \frac{9}{{10}}{{\cos }^2}t} = \sqrt {\frac{9}{{10}}} = \frac{3}{{\sqrt {10} }}\end{align*}\]

The curvature is then,

\[\kappa = \frac{{\left\| {\vec T'\left( t \right)} \right\|}}{{\left\| {\vec r'\left( t \right)} \right\|}} = \frac{{{}^{3}/{}_{{\sqrt {10} }}}}{{\sqrt {10} }} = \frac{3}{{10}}\]

In this case the curvature is constant. This means that the curve is changing direction at the same rate at every point along it. Recalling that this curve is a helix this result makes sense.

Example 2 Determine the curvature of \(\vec r\left( t \right) = {t^2}\,\vec i + t\,\vec k\).
Show Solution

In this case the second form of the curvature would probably be easiest. Here are the first couple of derivatives.

\[\vec r'\left( t \right) = 2t\,\vec i + \,\vec k\hspace{0.25in}\hspace{0.25in}\vec r''\left( t \right) = 2\,\vec i\]

Next, we need the cross product.

\[\begin{align*}\vec r'\left( t \right) \times \vec r''\left( t \right) & = \left| {\begin{array}{*{20}{c}}{\vec i}&{\vec j}&{\vec k}\\{2t}&0&1\\2&0&0\end{array}} \right|\,\,\,\,\,\begin{array}{*{20}{c}}{\vec i}&{\vec j}\\{2t}&0\\2&0\end{array}\\ & = 2\vec j\end{align*}\]

The magnitudes are,

\[\left\| {\vec r'\left( t \right) \times \vec r''\left( t \right)} \right\| = 2\hspace{0.25in}\hspace{0.25in}\left\| {\vec r'\left( t \right)} \right\| = \sqrt {4{t^2} + 1} \]

The curvature at any value of \(t\) is then,

\[\kappa = \frac{2}{{{{\left( {4{t^2} + 1} \right)}^{\frac{3}{2}}}}}\]

There is a special case that we can look at here as well. Suppose that we have a curve given by \(y = f\left( x \right)\) and we want to find its curvature.

As we saw when we first looked at vector functions we can write this as follows,

\[\vec r\left( x \right) = x\,\vec i + f\left( x \right)\vec j\]

If we then use the second formula for the curvature we will arrive at the following formula for the curvature.

\[\kappa = \frac{{\left| {f''\left( x \right)} \right|}}{{{{\left( {1 + {{\left[ {f'\left( x \right)} \right]}^2}} \right)}^{\frac{3}{2}}}}}\]
日日摸天天摸人人看,日日摸天天摸人人看在线观看,日日摸天天摸人人看最新777 <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <文本链> <文本链> <文本链> <文本链> <文本链> <文本链>